To understand liquid crystals, we must first understand the polarisation of light. In this article, we will explain what light is, how it can be filtered by polarisers and how liquid crystals can achieve this with such low power consumption. Applications of liquid crystals include human-machine interfaces for automotive, medical and industrial devices as well as augmented reality near-eye displays.Introduction
Light is an electromagnetic wave and can be visualised as electric and magnetic fields, each perpendicular to each other, and both perpendicular to the direction of travel. In the diagram below, the electric field is shown on the y-axis (pointing upwards), the magnetic field on the z-axis (coming out of the page), and the direction of travel is on the x-axis (pointing to the right). Both the electric and magnetic fields are sinusoidal waves, with peaks that may coincide (meaning they are in phase), or peaks that do not coincide (they are out-of-phase), or any phase difference in between.What is Light?

Electromagnetic wave with electric and magnetic fields perpendicular to each other, shown here in-phase
If you ‘look into’ the direction of travel of the wave, the electric field vector would appear as a vertical line, sometimes pointing upwards (at 0º from the vertical), like the minute hand of a clock at noon, or downwards (180º from the vertical), when the clock shows half past the hour.


A polarising filter only allows through light which is polarised in a particular orientation. It is a filter. It merely absorbs certain light polarisations and allows other polarisations to pass through. A polarising filter is composed of a network of infinitesimally small parallel lines, constructed at the molecular level by transparent chemical compounds. If we apply a vertical polarisation filter to daylight, light emerges vertically polarised. If we have a sequence of polarising filters which are ‘crossed’ (i.e. perpendicular with respect to each other), no light will emerge from the second filter, since the vertically-polarised light from the first filter cannot pass through the second (horizontal) filter.What is a polarising filter?



Polarisation filters applied to light producing (a) vertically polarised light or (b) no light
The top portion of the diagram shows how the first (vertical) filter polarises light vertically. This light can pass through the second (also vertical) filter since it has the same orientation. From the right side, we would simply see light emerging. In the lower part of this diagram, the horizontally-polarised light from the first filter cannot pass through the second (vertical) filter, and no light emerges from this arrangement. The output looks opaque to an observer positioned on the right. This arrangement was first investigated by Étienne-Louis Malus (1775-1812), a French physicist, who created a mathematical formula to calculate how much light emerges through polarising filters depending on their orientation. I won’t bore you with the maths.If the tip of the electric field vector is not constant over time, but rather traces the outline of an elliptically shaped clock, then the light is said to be elliptically polarised. A special case of an ellipse is a circle, and light filtered by a circular polariser emerges as circularly polarised light (where the electric field vector traces the outline of a circular clock). If we were to ‘look into’ the direction of propagation of a circularly-polarised light wave (from the right side), we would merely see a circle, with the electric field vector moving like the minute hand around the clock. However when we take time into account, you can see from the diagram below that the circularly polarised light now traces out a helix.Elliptically and Circularly Polarised Light



Circularly polarised light traces out a helix over time
Furthermore, if the electric field vector is rotating clockwise, we call this ‘right circularly polarised’ light; if the vector is rotating anticlockwise, it is called ‘left circularly polarised’ light.Liquid crystals sit somewhere between solids and liquids, that is, they have no positional order but they do have some orientational order:What is the ‘Order’ of a Liquid Crystal?
- Positional order refers to molecules which are in certain positions with respect to each other. Think of pieces on a chessboard and how they move on an 8 x 8 matrix, always respecting their relative positions (according to the rules of chess).
- Orientational order is when molecules are constrained to point in certain directions. In our analogy, the chess pieces must always sit upright on the board. That is their ‘preferred’ orientation.



Order Parameter vs Temperature for a typical liquid crystal
A dipole is a charged molecule with a ‘positive end’ and a ‘negative end’ (much like a magnet has a North pole and a South pole). The image below shows a ‘point dipole’ (a theoretical object of infinitesimally small size with no separation between the two equal and opposite charges), and a ‘physical dipole’ (a real world object) with two equal and opposite charges, separated by some distance.Liquid Crystals and Electric Fields



Point dipole vs. physical dipole, image attribution
When an electric field is applied to the dipole, a dipole will align with the electric field. If the molecule did not originally have a dipole, then one is induced when the field is applied. The electric field needed to accomplish this is pretty minimal in liquid crystals, whereas for solids, it has little effect because the molecules are held by very strong bonds. In liquids, electric fields have no influence over the molecules, since they possess a lot of kinetic energy. By the way, only alternating (AC) voltages can be used to switch liquid crystals, as a direct (DC) voltage would electrolyse (i.e. decompose) the liquid crystal. Furthermore, if we drive the liquid crystals with a direct voltage, the transparent indium tin oxide (ITO) electrodes would be reduced to indium tin, which is opaque and the device would rapidly fail. Hence, the drive circuitry must be AC with a zero average DC level, in order to ensure the correct operation of the liquid crystals.Since liquid crystals are anisotropic (any measured parameter depends on the direction of measurement), light entering at a point on the surface of the crystal will interact with different refractive indices, depending on the density of molecules in the direction of travel of the electromagnetic wave. When the refractive index depends on the direction of travel and the polarisation of the incoming wave, the material is considered to be ‘birefringent’. One value of refractive index corresponds to light polarised parallel to the director, and the other to light polarised perpendicular to the director.Liquid Crystals and Birefringence



Birefringence in liquid crystals, leading to multiple wave paths through the crystal
In a birefringent material, these two light waves will propagate through the liquid crystal at different speeds and may arrive out of phase when they exit the crystal, sometimes producing colours and other visual effects.A liquid crystal molecule is a dipole and hence will align itself with an applied electric field, which is exactly what happens in a liquid crystal display (LCD). LCDs can be found in handheld calculators, digital clocks, computer monitors, aircraft cockpit displays, petrol station fuel indicators and passenger announcement displays at train stations. The elements of a LCD are shown below:Liquid Crystals and Polarisation



Liquid Crystal Display with polarisers, Image attribution
This LCD is based on twisted nematic (TN) liquid crystals, with the following features:- Vertical filter to polarise incoming daylight.
- Glass substrate with indium tin oxide (ITO) electrodes. The electrodes form the dark shapes that will appear when the LCD is activated. There are vertical ridges etched on the surface so the liquid crystals are aligned with the polarised light.
- Twisted nematic liquid crystals.
- Glass substrate with common electrode film (ITO) with horizontal ridges to line up with the horizontal filter.
- Horizontal filter to block/allow through light.
- Reflective surface to send light back to the viewer.
There is plenty of life left in liquid crystal technologies, despite their existence since the late 19th century. Current and active research is leading us into territories new and bold, with applications in pharmaceuticals, medical, smart windows and augmented reality displays. Rest assured you can expect more from us on this topic in future articles.Outlook
1. Liquid Crystal, MIT Media Lab, URL 2. Colour and the Optical Properties of Materials, Richard Tilley, ISBN: 978-1-119-55468-4, URL 3. Computer Peripherals, Nanyang Technological University of Singapore, URLReferences
Need vendor-neutral advice choosing smart glass for your next project?